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I. Table of Contents

II. Introduction

The C++ feature of operator overloading for classes allows for syntactical sugar such as:

cout << "hello world" << endl;

Smart pointers such as “std::unique_ptr” and “std::shared_ptr” overload the ‘->’ operator to
give direct access to the referred-to object. The “std::optional” class overloads ‘->’ to give direct
access to the hosted object.

This proposal is centred specifically on making the ‘->’ operator more versatile and adaptable, so
that classes such as “std::variant” can give direct access to the hosted object, for example:

struct Laser {
bool Init(void)
{

return true;
}

};

struct Attenuator {
bool Init(void)
{

return false;
}

};

std::variant<Laser, Attenuator> obj;

bool retval = obj->Init(); // This here is the syntactical sugar

III. Motivation and Scope

It would be useful if “std::variant’” could overload the ‘->’ operator to give direct access to the
currently hosted object, but this currently isn’t possible with C++20, as it would require either:
(Possibility 1) A change to the specification of ‘std::variant’ stating that it can achieve something
which isn’t achievable without special compile support (similar to ‘std::has_virtual_destructor’).
(Possibility 2) A change to the C++ core language

This proposal is for Possibility 2 to change the C++ core language.



IV. Impact On the Standard

There will be full backward-compatibility. Old code will be unaffected.

V. Design Decisions

The C++ programming language already has about a hundred keywords as well as six identifiers
with special meaning, so I don’t want to add to the list. I propose the following new syntax making
use of the ‘inline’ keyword:

struct Device {

int Init(int const arg)
{

return 5 + arg;
}

};

struct Morpher {

Device dev;

operator->
{

return  dev.inline;
}

};

The keyword ‘inline’ shall be expanded to whatever appears after the ‘->’ operator. For example
the following code snippet:

int main(void)
{

Morpher obj;
obj->Init(4);

}

shall behave as though the previous code snippet were written as:

struct Morpher {

Device dev;

auto operator->(void)
{

return  dev.Init(4);
}

};



VI. Technical Specifications

The keyword ‘inline’ shall expand to:

identifier(arguments)

In the previous example where we had an invocation in the form of:

Morpher obj;
obj->Init(4);

The ‘inline’ keyword shall expand to:

Init(4)

The arguments are evaluated once upon entering the routine, and are not evaluated a second time
even if ‘inline’ appears multiple times in the body of the routine.

If the definition of “operator->” contains any static objects, then there is only one instance of these
objects for the entire program. For example:

operator->
{

static unsigned counter = 0u; // There is only one copy of this

//  variable for the entire program

++counter;

if ( counter & 1u ) dev.SetReply(nullptr);

return  dev.inline;
}

If this proposal were to be accepted to the C++ programming language, it would allow us to amend
‘std::variant’ as follows:

struct std::variant {

operator->
{

return std::visit( [this]<class T>(T &u) { return u.inline; }, *this );
}

};

Of course this new language feature would not just be limited to ‘std::variant’. Any library
developer or programmer would be free to write their own classes using this new feature.
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