
Document number: P [TO-BE-CONFIRMED] R0
Date: 2022-09-21
Audience: C++ Standard Committee
Reply-to: T. P. K. Healy <tho8ma8spkhe8aly at yah8oo dot co8m> Remove all 8’s from address

I. Table of Contents

II. Introduction

The C++ feature of operator overloading for classes allows for syntactical sugar such as:

cout << "hello world" << endl;

Smart pointers such as “std::unique_ptr” and “std::shared_ptr” overload the ‘->’ operator to
give direct access to the referred-to object. The “std::optional” class overloads ‘->’ to give direct
access to the hosted object.

This proposal is centred specifically on making the ‘->’ operator more versatile and adaptable, so
that classes such as “std::variant” can give direct access to the hosted object, for example:

struct Laser {
bool Init(void)
{

return true;
}

};

struct Attenuator {
bool Init(void)
{

return false;
}

};

std::variant<Laser, Attenuator> obj;

bool retval = obj->Init(); // This here is the syntactical sugar

III. Motivation and Scope

It would be useful if “std::variant’” could overload the ‘->’ operator to give direct access to the
currently hosted object, but this currently isn’t possible with C++20, as it would require either:
(Possibility 1) A change to the specification of ‘std::variant’ stating that it can achieve something
which isn’t achievable without special compile support (similar to ‘std::has_virtual_destructor’).
(Possibility 2) A change to the C++ core language

This proposal is for Possibility 2 to change the C++ core language.

IV. Impact On the Standard

There will be full backward-compatibility. Old code will be unaffected.

V. Design Decisions

The C++ programming language already has about a hundred keywords as well as six identifiers
with special meaning, so I don’t want to add to the list. I propose the following new syntax making
use of the ‘inline’ keyword:

struct Device {

int Init(int const arg)
{

return 5 + arg;
}

};

struct Morpher {

Device dev;

operator->
{

return dev.inline;
}

};

The keyword ‘inline’ shall be expanded to whatever appears after the ‘->’ operator. For example
the following code snippet:

int main(void)
{

Morpher obj;
obj->Init(4);

}

shall behave as though the previous code snippet were written as:

struct Morpher {

Device dev;

auto operator->(void)
{

return dev.Init(4);
}

};

VI. Technical Specifications

The keyword ‘inline’ shall expand to:

identifier(arguments)

In the previous example where we had an invocation in the form of:

Morpher obj;
obj->Init(4);

The ‘inline’ keyword shall expand to:

Init(4)

The arguments are evaluated once upon entering the routine, and are not evaluated a second time
even if ‘inline’ appears multiple times in the body of the routine.

If the definition of “operator->” contains any static objects, then there is only one instance of these
objects for the entire program. For example:

operator->
{

static unsigned counter = 0u; // There is only one copy of this

// variable for the entire program

++counter;

if (counter & 1u) dev.SetReply(nullptr);

return dev.inline;
}

If this proposal were to be accepted to the C++ programming language, it would allow us to amend
‘std::variant’ as follows:

struct std::variant {

operator->
{

return std::visit([this]<class T>(T &u) { return u.inline; }, *this);
}

};

Of course this new language feature would not just be limited to ‘std::variant’. Any library
developer or programmer would be free to write their own classes using this new feature.

VII. Acknowledgements This is just as draft

VIII. References This is just as draft

