
Chimeric Pointer 2022-11-27
(Draft No. 3 by T. P. K. Healy)

I was writing code for a graphical user interface program on a desktop PC using the wxWidgets
framework. I had designed a dialog box that had several widgets, in particular text boxes and combo
boxes. I wanted to write a function that could manipulate either a combo box or a text box, as follows:

void Red(wxControl *const p)

{

p->SetBackgroundColour(*wxRED);

p->SetValue("pending");

p->Refresh();

}

This function didn’t compile however, because ‘SetValue’ is not a member function of the class
wxControl. So I took a look at the wxWidgets documentation and I found the class hierarchy diagrams:

Text boxes and combo boxes both inherit the ‘SetValue’ method from wxTextEntry. It would have been
nice if there were an intermediate class called wxControlWithTextEntry as follows:

because then both wxComboBox and wxTextCtrl could inherit from wxControlWithTextEntry, and
so then my function ‘Red’ above could take a pointer to a wxControlWithTextEntry.

Not wanting to write a template function, I had to re-write my function as follows:

void Red(wxControl *const pC, wxTextEntry *const pT)

{

pC->SetBackgroundColour(*wxRED);

pT->SetValue("pending");

pC->Refresh();

}

Page 1 of 8

and then invoke it as follows:

wxTextCtrl *const p1 = new wxTextCtrl;

Red(p1,p1);

wxComboBox *const p2 = new wxComboBox;

Red(p2,p2);

This is when I came up with the idea of a ‘chimeric pointer’. A chimeric pointer would work as follows:

void Red(chimeric_pointer<wxControl,wxTextEntry> p)
{

p->SetBackgroundColour(*wxRED);

p->SetValue("pending");

p->Refresh();

}

The way that this chimeric pointer would work is as follows:

(1) When defining a chimeric pointer, you specify all of the base classes you need, for example:
chimeric_pointer<wxControl,wxTextEntry> p;

(Note that the order in which you specify the Base classes is important for the look-up)
(2) When assigning to a chimeric pointer, the expression on the right-hand side must be a pointer to a
class which can convert implicitly to a pointer to all of the base classes specified in the first point above,
otherwise the compiler will terminate compilation and issue a diagnostic message.
(3) When you apply the ‘->’ operator to a chimeric pointer and then try to access a member object or a
member function, the compiler tries to find the member object/function in all of the base classes
specified in the first point above.

So for example, in the above code snippet where I have:
p->SetBackgroundColour(*wxRED);

The compiler searches for a member named ‘SetBackgroundColour’ in wxControl, and it successfully
finds such a method and invokes it. For the next example, let’s take the next line:

p->SetValue("pending");

The compiler searches for a member called ‘SetValue’ in wxControl, and it fails to find it. So next it
searches for a member called ‘SetValue’ in wxTextEntry, and it finds it and invokes it.

If the compiler cannot find the member inside any of the base classes, then compilation is terminated
and the compiler must issue a diagnostic.

Page 2 of 8

Alternatively we could write the function ‘Red’ as a template function as follows:

template<class T>

requires (std::is_convertible_v<T*, wxControl *>

&& std::is_convertible_v<T*, wxTextEntry*>)

void Red(T *const p)

{

p->SetBackgroundColour("red");

p->SetValue("pending");

p->Refresh();

}

There are four drawbacks to having a template function:
(Drawback No. 1) The size of the machine code increases as there will be an instantiation of ‘Red’

for each class (e.g. wxTextCtrl, wxComboBox, wxSomeOtherWidget)
(Drawback No. 2) If the body of ‘Red’ contains a definition of a static-duration object, there will be a

copy of the object for each of the instantiations. If the program is multi-threaded,
there will also be a mutex and lock-management code to prevent double-construction
of the static-duration object.

(Drawback No. 3) If the function body of ‘Red’ contains a definition of a static-duration std::mutex to
protect a global object, then there will be more than one mutex (i.e there will be one
mutex for each instantiation of ‘Red’).

(Drawback No. 4) We don’t have just one function pointer that can be invoked on a pointer to any class
that derives from both wxControl and wxTextEntry.

I will go into further detail about Drawback No. 4. Let’s say we have an array of function pointers that
we want to invoke on an object, something like:

void (*func_ptrs[3u])(chimeric_ptr<wxControl,wxTextEntry>) = { Red, Green, Blue };

And let’s say we make use of this array in an event handler as follows:

void Dialog_Main::OnClick_Stop(wxCommandEvent&)

{

for (wxControl *const p_control : p_controls)

{

for (auto const f : func_ptrs) f(p_control);

}

}

This is only possible if there is just one function in memory that can deal with all classes which derive
from both wxControl and wxTextEntry.

Page 3 of 8

With regard to the look-up of members, here is a complex case:

struct AirBreather { int close; };

struct WaterBreather { float (*close)(char); };

struct Frog : virtual AirBreather, virtual WaterBreather {};

int main(void)

{

Frog my_frog;

chimeric_pointer<AirBreather,WaterBreather> p = &my_frog;

auto x = p->close;

}

In the above code snippet, ‘x’ is a variable of type int.

However if we re-order the base classes as follows:

chimeric_pointer<WaterBreather,AirBreather> p = &my_frog;

then ‘x’ is now a pointer to a function which takes a char and returns a float. The compiler searches
for the member in the base classes in the order in which they’re written from left to right. When
performing a lookup, the compiler stops searching as soon as it finds a match. The following code will
fail to compile because ‘close’ is an int:

chimeric_pointer<AirBreather,WaterBreather> p = &my_frog;

p->close('k'); // COMPILER ERROR - ‘close’ is an int

On 2022-11-27 on the C++ Standard Proposals Mailing List, Marian Darius provided sample code for
an implementation of chimeric_ptr which would be very similar to what I am proposing. Darius’s code
works as follows:

chimeric_ptr<WaterBreather,AirBreather> p = &my_frog;

p.as<AirBreather>()->close = 5;

p.as<WaterBreather>()->close('n');

I have made additions to Darius’s code to make it work with complex virtual inheritance, which you can
see up on the GodBolt website here: https://godbolt.org/z/csMKTjjsh
On the next page you can see the entire code copy-pasted from GodBolt.

Page 4 of 8

https://godbolt.org/z/csMKTjjsh

// BEGIN Chimeric pointer implementation

#include <type_traits> // is_convertible_v

#include <tuple> // tuple

#include <exception> // exception

// I have chosen to use 'is_convertible_v' instead of "is_base_of_v" for two reasons:

// (1) The latter would accommodate non-public inheritance (we don't want that)

// (2) Currently the C++ programming language only allows Derived class pointers

// to be converted to Base class pointers. However in the future, maybe the

// Standard will be changed to allow some other kind of implicit conversion.

// I want the chimeric pointer to be versatile and future-proof so I'm

// choosing 'is_convertible_v' over the alternatives of "is_base_of_v" or

// 'derived_from'.

// The next line is the exception that will be thrown if you

// try to de-reference a chimeric_ptr that is a nullptr

class exception_chimeric_nullptr : public std::exception {};

template<class... Bases>

class chimeric_ptr {

protected:

std::tuple<Bases*...> pointers;

public:

template<class T>

requires ((std::is_convertible_v<T*, Bases*> && ...))

/* implicit */ chimeric_ptr(T *const p)

{

// The fold expression on the next line sets

// each of the pointers in the tuple

((std::get<Bases*>(pointers) = p), ...);

}

/* implicit */ chimeric_ptr(std::nullptr_t const p)

{

// The fold expression on the next line sets

// each of the pointers in the tuple

((std::get<Bases*>(pointers) = nullptr), ...);

}

Page 5 of 8

template<class As>

requires ((std::is_same_v<Bases, As> || ...))

As *as(void)

{

As *const p = std::get<As*>(pointers);

if (nullptr == p) throw exception_chimeric_nullptr();

return p;

}

bool operator==(std::nullptr_t) const

{

return nullptr == std::get<0u>(pointers);

}

};

// END Chimeric pointer implementation

// Example

struct Control {

virtual ~Control() = default;

void Refresh();

void SetBackgroundColour(const char*);

};

struct TextEntry {

virtual ~TextEntry() = default;

void SetValue(const char*);

};

struct TextControl : Control, TextEntry {

virtual ~TextControl() = default;

};

struct Combo : Control, TextEntry {

virtual ~Combo() = default;

};

Page 6 of 8

void Red(chimeric_ptr<Control,TextEntry> p)

{

if (nullptr == p) return;

p.as<Control>()->SetBackgroundColour("red");

p.as<TextEntry>()->SetValue("pending");

p.as<Control>()->Refresh();

}

// The following is the alternative (i.e. to have a template function)

template<class T>

requires (std::is_convertible_v<T*, Control *>

&& std::is_convertible_v<T*, TextEntry*>)

void Red_Temp(T *const p)

{

p->SetBackgroundColour("red");

p->SetValue("pending");

p->Refresh();

}

// Invocations

void UseRed(TextControl* textCtrl, Combo* combo)

{

Red(textCtrl);

Red(combo);

Red_Temp(textCtrl);

Red_Temp(combo);

}

// The following code is a complex look-up case

struct AirBreather { int close; };

struct WaterBreather { float (*close)(char); };

class Frog : virtual public AirBreather, virtual public WaterBreather {};

Page 7 of 8

typedef int wxCommandEvent;

class Dialog_Main {

void OnClick_Stop(wxCommandEvent &event);

};

chimeric_ptr<Control,TextEntry> controls[5u] =

{ nullptr, nullptr, nullptr, nullptr, nullptr};

void (*func_ptrs[3u])(chimeric_ptr<Control,TextEntry>) = { Red, Red, Red };

void Dialog_Main::OnClick_Stop(wxCommandEvent &event)

{

for (auto &control : controls)

{

for (auto const &f : func_ptrs)

{

f(control);

}

}

}

int main(void)

{

Frog my_frog;

chimeric_ptr<WaterBreather,AirBreather> p = &my_frog;

p.as<AirBreather>()->close = 5;

float some_value = p.as<WaterBreather>()->close('n');

auto x = p.as<AirBreather>()->close; // x is of type 'int'

auto y = p.as<WaterBreather>()->close; // y is of type 'float (*)(char)'

}

This implementation of chimeric_ptr is quite good but I still think it would be preferable to have
compiler support to perform a look-up of the members in the base classes – which would alleviate the
need for a member function called ‘as’ which must be given a specific base class parameter.

Please respond to this paper on the C++ Standard Proposals Mailing List:

https://lists.isocpp.org/mailman/listinfo.cgi/std-proposals

Page 8 of 8

https://lists.isocpp.org/mailman/listinfo.cgi/std-proposals

