
Chimeric Pointer
Earlier today I was writing code for a graphical user interface program on a desktop PC using the
wxWidgets framework. I had designed a dialog box that had several widgets, in particular text boxes
and combo boxes.

I wanted to write a function that could manipulate either a combo box or a text box, as follows:

void Red(wxControl *const p)
{

p->SetBackgroundColour(*wxRED);
p->SetValue("pending");
p->Refresh();

}

This function didn’t compile however, because ‘SetValue’ is not a member function of the class
wxControl. So I took a look at the wxWidgets documentation and I found the class hierarchy diagrams:

Text boxes and combo boxes both inherit the ‘SetValue’ method from wxTextEntry. It would have been
nice if there were an intermediate class called wxControlWithTextEntry as follows:

because then wxComboBox and wxTextCtrl could inherit from it, and so then my function ‘Red’ above
could take a pointer to a wxControlWithTextEntry.

Not wanting to write a template function, I had to re-write my function as follows:

void Red(wxControl *const pC, wxTextEntry *const pT)
{

pC->SetBackgroundColour(*wxRED);
pT->SetValue("pending");
pC->Refresh();

}

and then invoke it as follows:

wxTextCtrl *const p1 = new wxTextCtrl;
Red(p1,p1);

wxComboBox *const p2 = new wxComboBox;
Red(p2,p2);

This is when I came up with the idea of a ‘chimeric pointer’. A chimeric pointer would work as follows:

void Red(chimeric_pointer<wxControl,wxTextEntry> p)
{

p->SetBackgroundColour(*wxRED);
p->SetValue("pending");
p->Refresh();

}

The way that this chimeric pointer would work is as follows:

(1) When defining a chimeric pointer, you specify all of the base classes you require, for example:
chimeric_pointer<wxControl,wxTextEntry> p;

(2) When assigning to a chimeric pointer, the expression on the right-hand side must be a pointer to a
class which can convert implicitly to a pointer to all of the base classes specified in the first point above,
otherwise the compiler will terminate compilation and issue a diagnostic message.
(3) When you apply the ‘->’ operator to a chimeric pointer and then try to access a member object or a
member function, the compiler tries to find the member in all the base classes specified in the first point
above.

So for example, in the above code snippet where I have:

p->SetBackgroundColour(*wxRED);

The compiler searches for a member named ‘SetBackgroundColour’ in wxControl, and it successfully
finds such a method and invokes it.

For the next example, let’s take the next line:

p->SetValue("pending");

The compiler searches for a member called ‘SetValue’ in wxControl, and it fails to find it. So next it
searches for a member called ‘SetValue’ in wxTextEntry, and it finds it and invokes it.

If the compiler cannot find the member inside any of the base classes, then compilation is terminated
and the compiler must issue a diagnostic.

